- 6. Horowitz, R. H. (1957) J. Am. Chem. Soc. 76, 6561.
- 7. Harborne, J. B., Mabry, T. J. and Mabry, H. (eds.) (1975) *The Flavonods*, p. 66. Chapman & Hall, London.
- 8. Marini-Bettolo, G. M., Deulofeu, V. and Hug, E. (1950) Gazz. Chim. Ital. **86.** 63.
- 9. Deulofeu, V. and Schopflocher, N. (1953) Gazz. Chim. Ital. 83, 449.
- Cameron, D. W. and Crossley, M. J. (1977) Aust. J. Chem. 30, 1161.

Phytochemistry, 1980, Vol. 19, pp. 1254-1255. © Pergamon Press Ltd. Printed in England.

0031-9422/80/0601-1254 02.00/0

TWO NEW 5-METHYLCOUMARINS FROM ERLANGEA FUSCA*

ABDOLHOSSEIN RUSTAIYAN†, LILLY NAZARIANS† and FERDINAND BOHLMANN‡

† Department of Chemistry, National University of Iran, Teheran, Iran; ‡ Institute of Organic Chemistry, Technical University Berlin, Strasse des 17 Juni 135, D-1000 12, West Germany

(Revised received 11 October 1979)

Key Word Index—Erlangea fusca; Compositae; Vernonieae; new 5-methylcoumarins.

So far from the genus *Erlangea* (Compositae, tribe Vernonieae), four species have been investigated [1]. While three species afforded sesquiterpene lactones, one only contained unique 5-methylcoumarins [2], also present in the related genera *Ethulia* [3] and *Bothriocline* [4]. We now have investigated the aerial parts of *E. fusca* S. Moore and again this species contains two new coumarins of this type.

The spectral data show that we are dealing with the two isomeric 5-methylcoumarins, 1 and 3. While the ¹H NMR spectra are very similar, the acetylation of 1 clearly shows that the less polar compound is the isomer with a 6-membered oxygen ring. The 'H NMR signals of the aromatic protons and that of the 5methyl group are very similar to those of analogous compounds of this type [2-4]. The chemical shift of the other Me groups are characteristic of those at an oxygen bearing carbon, while the position of the signal of the only CH₂-group shows that in both compounds this group is benzylic. Therefore the O-function must be located at C-2'. In the spectrum of the acetate 2 the 1'-H-protons show double doublets, while in the spectra of 1 and 3 these signals collapse to a simple doublet.

In the MS of 1 loss of Me and H_2O leads to a pyrrylium cation (m/e 277) (4). This fragment most probably loses acetylene (m/e 201). In the spectrum of 3 similar fragments can be observed, indicating that rearrangements most probably take place in the M^+ leading perhaps also to 4, although the relative intensities in the spectra of 1 and 3 are different. We have

Table 1. ¹H NMR data of **1-3** (270 MHz, CDCl₃, TMS as internal standard)

internal standard)			
	1	2	3
6-H	7.20 d(br)	7.23 d(br)	$7.19 \ d(br)$
7-H	7.39 dd	7.41 dd	7.39 dd
8-H	$7.11 \ d(br)$	$7.06 \ d(br)$	$7.04 \ d(br)$
9-H	$2.87 \ s(br)$	$2.68 \ s(br)$	$2.68 \ s(br)$
1' ₁ -H)		3.19 dd	
· }	3.11 d		3.11 d
15-H 🕽		3.08 dd	
2 ⁷ -H	4.83 t	5.28 dd	4.91 t
4'-H	1.35 s	1.59 s	1.41 s
5'-H	1.28 s	1.58 s	1.31 s
OAc	·	2,00 s	

J(Hz): 6,7 = 8.5; 7,8 = 7.5; 1',2' = 9.5(**2**: 1'₁,2' = 10; 1'₂,2' = 8).

named 1 erlangeafusciol and 3 isoerlangeafusciol. The isolation of 1 and 3 again shows that the genus Erlangea perhaps is not very homogenous. It would be interesting to compare the chemistry with the anatomical aspects.

EXPERIMENTAL

The air-dried aerial parts (62 g) were cut up and extracted with Et₂O. The first extract obtained was separated by column chromatography (Si gel) and further by TLC. Finally 65 mg 1 (Et₂O) and 45 mg of 3 (Et₂O) were obtained.

Erlangeafusciol (1). Colourless crystals, mp 118-119° (Et₂O-petrol). IR (CHCl₃) cm⁻¹: 3610 (OH), 1720 (C=O),

^{*}Part 19 in the series "Naturally Occurring Coumarin Derivatives". For Part 18 see Bohlmann, F. and Zdero, C. (1980) *Phytochemistry* **19**, 331.

1
$$R = H$$
 3 $R = H$ 4 $R = 227$

1635, 1610, 1575 (aromatic); MS (m/e (rel. int.) 260.105 (M $^+$ 77%) ($C_{15}H_{16}O_4$); 245 (M $^+$ - Me, 22); 227 (245 – H_2O , 92); 201 (227 – C_2H_2 , 100).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589 \quad 578 \quad 546 \quad 436 \quad 365 \text{ nm}}{+32.5 \quad +35.0 \quad +40.0 \quad +67.5 \quad +140.0}$$

$$(c = 0.2, \text{ CHCl}_3).$$

1 (10 mg) in 0.5 ml Ac_2O was heated for 1 hr with 10 mg 4-pyrrolidinopyridine [5] at 70°. Usual work-up afforded 8 mg of **2**. IR (CHCl₃) cm⁻¹, 1720 (OAc, C=O), 1635, 1605, 1565 (aromatic), 1260 (OAc); MS m/e (rel. int.): 302 (M $^{\circ}$ 10%) ($C_{17}H_{18}O_5$); 242 (M° – HOAc, 8); 227 (242 – Me, 27); 201 (227 – C_2H_2 , 10); 43 (MeCO $^{\circ}$, 100).

Isoerlangeafusciol (3). Colourless crystals, mp 121° (Et₂Opetrol), IR (CHCl₃) cm $^{-1}$: 3605 (OH), 1720 (C=O), 1630, 1610, 1570 (aromatic), MS m/e (rel. int.) 260.105 (M⁺, 100%) (C₁₅H₁₆O₄); 245 (M⁺-Me, 16); 227 (245-H₂O, 30); 217 (245-CO, 41); 201 (227-C₂H₂, 26); 189 (227-CO, 88).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589 \quad 578 \quad 546 \quad 436 \quad 365 \quad \text{nm}}{+35.3 \quad +36.5 \quad +40.0 \quad +68.9 \quad +144.1}$$
(c = 0.17, CHCl₃).

Acknowledgements—A. R. thanks the Ministry of Culture and Higher Education of Iran for financial support and Dr. S. Dossaji, Department of Botany, University of Nairobi for plant material.

REFERENCES

- 1. Rustaiyan, A., Nazarians, L. and Bohlmann, F. (1980) Phytochemistry 19, 1230 (and refs. cited therein).
- Bohlmann, F. and Zdero, C. (1977) Chem. Ber. 110, 1755.
- 3. Bohlmann, F. and Zdero, C. (1977) Phytochemistry 16,
- 4. Bohlmann, F. and Zdero, C. (1977) Phytochemistry 16, 1261.
- 5. Hoefle, G. and Steglich, W. (1969) Synthesis 619.